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Abstract
This paper presents a new methodology for autonomous precision control of satellite
formations in the presence of uncertainties and external disturbances. The methodology
is developed in two steps. First, using a nominal system model that provides the best
assessment of real-life uncertainties, a nonlinear controller that satisfies the formation
configuration requirements is developed without making any linearizations/approxima-
tions. This closed-form control strategy is inspired by results from analytical dynamics
and uses the fundamental equation of constrained motion. In the second step, an
adaptive continuous robust controller is developed to compensate for model uncer-
tainties and field disturbances to which the satellite formation may be subjected. This
controller is based on a generalization of the concept of sliding mode control, and
produces no chattering. The control gain is automatically updated in real time and the
norm of the trajectory error is guaranteed to lie within user-provided desired bounds
without a priori knowledge of the uncertainty/disturbance bounds. Since the control
force is explicitly obtained, the approach is not computationally intensive, thereby
making the approach ideal for on-orbit autonomous real-time satellite formation con-
trol. Numerical simulations demonstrate the effectiveness of the proposed control
methodology, in which a desired formation configuration is required to be precisely
and autonomously maintained despite large initial trajectory errors in the presence of
uncertain satellite mass and environmental disturbances.
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Introduction

Satellite formation flying (SFF) has been in the spotlight for the last two decades
because the use of multiple small satellites offers advantages such as high-resolution
imaging and enhanced flexibility, efficiency, and economic benefits compared with a
single large satellite [1]. However, more advanced technology is required for precision
formation control mainly due to coupled dynamics between the distributed satellites
and severe system uncertainties/disturbances, i.e., nonuniform gravitational potential,
atmospheric drag, solar radiation pressure, and luni-solar perturbations.

The SFF problem is usually explored using unperturbed, linearized equations of the
real nonlinear dynamics such as Clohessy-Wiltshire equations [2] for a circular refer-
ence orbit or Tschauner-Hempel equations [3] for an elliptical reference orbit. How-
ever, controllers designed based on these linearized dynamics must compensate for the
uncertain effects of various perturbations in order to be used in a real-world SFF
mission. Over the last few decades, numerous robust control strategies have been
developed and proposed. Won and Ahn [4] developed nonlinear dynamic equations
of relative motion for a constant distance separation between satellites and utilized the
state-dependent Riccati equation technique to control the satellites modeled by the
newly developed relative equations. Two cases were exemplified under the effects of J2
oblateness, atmospheric drag, and solar radiation pressure: noncircular and noncoplanar
Molniya orbit formation flying and constant angle separation formation flying in the
same orbital plane. Wong et al. [5] proposed an adaptive output feedback control for
relative position tracking. The lack of velocity measurements was assumed and esti-
mated through a high-pass filter and a parameter adaptation control law was construct-
ed to ensure semi-global, asymptotic stability of the tracking error in the presence of
constant disturbance forces. In de Queiroz et al. [6] a Lyapunov-based, adaptive control
law was developed to guarantee global asymptotic convergence of the relative position
tracking error in the presence of unknown, constant or slowly-varying uncertainties.
Vignal and Pernicka [7] used a state-feedback linearization technique for satellite
formation control in the presence of the Earth oblateness and measurement noise
assuming limited on-off thrusting capabilities. Breger and How [8] presented a variant
of the Gauss’s variational equations that incorporates the effects of J2 and developed an
online, optimization-based, model predictive controller in an effort to improve robust-
ness against model uncertainties. It was shown that fuel efficiency was increased and
many types of constraints could be handled such as error-box maintenance. Using
eccentricity/inclination vector representation, Lim et al. [9] was able to design a robust
model predictive controller in the face of model uncertainties or external disturbances
while satisfying various input and/or state constraints and avoiding collision risk.
However, the maximum bound on the uncertainties was required to be known for the
elimination of the uncertainty effects. Hu and Ng [10] proposed a robust control
scheme for two spacecraft in formation subjected to time-varying disturbances based
on sliding mode control. They also assumed that the disturbances are bounded by a
positive scalar function which is a priori known.

Amidst others, sliding mode control (SMC) [11, 12] has attracted much attention for
powerful robustness to matched uncertainties and external disturbances, computational
simplicity, fast response, and easy implementation. Yeh et al. [13] developed discon-
tinuous control laws based on SMC assuming that the maximum magnitude of the
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uncertainties imposed on the SFF dynamics is a priori known. Conventional SMC
methods in general endeavor to place the system trajectories onto the so-called sliding
surface and are usually characterized by discontinuous control and high control gains.
In order to prevent this so-called chattering problem resulting from the use of discon-
tinuous control action, which is usually pointed out as the main drawback of SMC, the
boundary-layer approach [14] was introduced. However, since the boundary layer
approach generally introduces a loss of accuracy due to its continuous approximation,
three different approaches for continuous SMC were proposed by Massey and Shtessel
[15], which include SMC augmented with a sliding mode disturbance observer, a
super-twisting algorithm, and integral SMC. Udwadia et al. [16] used various kinds
of continuous functions to effectively control relative motion without chattering.
Although they do not exactly converge to zero, the errors are guaranteed to be made
arbitrarily small. However, in Massey and Shtessel [15] and Udwadia et al. [16] a good
estimate of the upper bound for the uncertainties is assumed to be available, something
that might often be quite difficult to obtain in practice. Another practical limitation is
that the control input saturation is not considered. Godard [17] introduced adaptive
fault-tolerant control laws based on SMC in the presence of uncertain satellite mass and
unknown disturbances. In their approach exact knowledge of the uncertain mass or the
magnitude of the disturbances is not necessary and two different sliding surfaces
(conventional SMC and nonsingular terminal SMC) are designed and compared. Bae
and Kim [18] proposed an adaptive SMC strategy to include the cases when the upper
bounds on the modeling errors or external disturbances are unknown. The uncertainties
were also estimated using neural networks to save control effort and reduce chattering.
However, they assumed zero initial errors. This assumption is important, because
without it, robustness of SMC is not guaranteed until the system arrives at the sliding
surface. In the approach presented herein this assumption is not necessary.

In this paper, a two-step adaptive control methodology for precision satellite forma-
tion control is proposed by generalizing the notion of SMC in the presence of model
uncertainties and uncertain space environments. It is assumed that the magnitude of the
uncertainties is unknown but bounded. The first step considers the nonlinear ‘nominal’
satellite formation system, which is defined as a deterministic system that includes our
best estimates—based on theory/experiments/intuition and/or experience—of the un-
certain parameters. An explicit real-time on-orbit controller is obtained through the use
of the fundamental equation of constrained motion [19]. This controller causes the
nominal system to precisely track a user-specified desired trajectory and it considers the
nonlinear system in its entirety without any linearizations/approximations. This ap-
proach has been successfully applied to modeling and control of complex multi-body
dynamical systems [20–26] and satellite formation systems [27–30]. An initial mis-
alignment problem is also resolved by introducing a second-order damped system,
guaranteeing the asymptotic stability of a constrained SFF system. In the second step,
an adaptive control methodology is developed for on-orbit real time precision tracking
of the uncertain system in which knowledge of the values of the upper bounds on the
uncertainties in the system is not required. This controller updates its gain in an
autonomous manner to cancel out the effects of all the uncertainties not considered in
the first step of the control methodology without requiring any knowledge of the bound
on these uncertainties. Also, it produces no chattering because only continuous func-
tions are involved and it successfully tracks the nominal trajectory generated by the
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controller developed in the first step despite the presence of uncertainties in the
satellite’s properties (its mass) and unknown disturbances. Since initial errors have
been already considered when generating the nominal trajectory in the first step, the
sliding variable starts with zero and the sliding mode begins from the initial time
regardless of the values of the initial trajectory errors. This greatly enhances the
performance of the control methodology proposed herein and provides a significant
advance over available approaches in the current literature.

The structure of the paper is as follows. In Section 2 a satellite formation
flight model is presented for which the equations of motion are obtained. Next,
the two-step control methodology is briefly presented for precision trajectory
control of the formation in which both the mass of the satellite and the external
disturbances are uncertain. Section 3 deals with the first step in this two-step
approach using the fundamental equation of constrained motion and assuming
the nominal satellite formation system with no uncertainties. Section 4 deals
with the development of an adaptive control methodology based on continuous
SMC techniques. As a prelude, Subsection 4.1 first considers the development
of a precision tracking control approach in which knowledge of the uncertainty
bounds is needed. This subsection serves as a contrast to, and a jumping point
for, the adaptive control approach developed in Subsection 4.2 that follows in
which no knowledge of the uncertainty bounds on the mass of the satellite and
the external environmental disturbances is needed. In this subsection we provide
the theoretical underpinnings of our approach for controlling the satellite for-
mation in the presence of uncertainties while guaranteeing the satisfaction of a
user-specified bound, however small, on the tracking error. Section 5 provides
numerical simulations of the approach when applied to the equations of motion
given in Section 2. These in-depth simulations include studies on the effects of
limitations on the thrust force on the effectiveness of the proposed control
methodology. They show the ease and accuracy with which on-orbit real-time
precision tracking of uncertain systems can be accomplished. Section 6 gives
the conclusions.

Satellite Formation Flight Model and Equations of Motion

The proposed formation flight model comprises a leader satellite which orbits
the Earth in a general elliptical planar trajectory and a follower satellite that
moves relative to the leader satellite in a desired configuration. It is assumed
that we only focus on controlling the follower satellite to move along the
desired relative reference trajectory around the leader satellite that is separately
controlled to follow a predetermined elliptical orbit. In this paper, the relative
motion is described in the so-called local-vertical, local-horizontal (LVLH)
frame [31] fixed at the mass center of the leader satellite, where the x-axis is
directed radially outward along the local vertical, the z-axis is along the orbital
angular momentum vector of the leader satellite, and the y-axis completes the
right-handed triad. In this frame the nonlinear equations of relative motion for
the follower satellite, considering the control thrust and external disturbance
forces, can be written in the following form [32]:
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where m is the unknown time-varying mass of the follower satellite, q = [x y z]T

is the position vector in the LVLH frame of the follower satellite where the
superscript ‘T’ denotes the transpose of a vector or a matrix, the dot denotes the
time derivative of a variable, θ refers to the true argument of latitude (sum of the
argument of periapsis and true anomaly), rL is the distance from the center of the
Earth to the mass center of the leader satellite, and μ⊕ is the gravitational
parameter of the Earth. Also, Ui (i = x, y, z) denotes the control thrust input
vector of the follower satellite in each direction of the LVLH frame and Di is
an element of the unknown net disturbance forces caused by nonuniform
gravitational potential, atmospheric drag, and so on. Furthermore, the mass of

the follower, m(t) > 0, is assumed to be time-varying and its rate of change, ṁ, is
related to the control thrust vector via the relation [33]

ṁ ¼ −λ‖U‖; ð2Þ

where λ ¼ 1
I spg0

> 0, where Isp the specific impulse, g0 is the acceleration due to

gravity at sea level, U tð Þ ¼ Ux Uy Uz½ �T is the control thrust vector, and ‖ ⋅ ‖
denotes the Euclidean norm of a vector. In this paper, assuming an Isp value of
1280 s, λ = 8.0 × 10−5 s/m is used, assuming that a Hall thruster system is used
for propulsion [34].In the present investigation, the projected circular formation
[35] is taken as the desired formation configuration. In this formation the relative
distance between the leader and the follower satellites is maintained constant
when the relative trajectory is projected onto the y-z plane of the LVLH frame.
Mathematically, the formation requirement is described by yd(t)2 + zd(t)2 = ρ2

where ρ is a constant radius of the projected circle and the subscript ‘d’ is
appended to denote desired quantities. Also, to achieve a bounded motion, the
motion projected onto the x-z plane is constrained to lie on a straight line
2xd(t) = zd(t). More specifically, the corresponding projected circular formation
equations satisfy the following desired trajectory in the LVLH frame:

xd tð Þ ¼ ρ
2
sin ntð Þ; yd tð Þ ¼ ρcos ntð Þ; zd tð Þ ¼ ρsin ntð Þ: ð3Þ
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At each instant of time the solution q(t) of Eq. (1) is required to track

qd tð Þ ¼ xd yd zd½ �T , where xd(t), yd(t), and zd(t) satisfy Eq. (3).
In the next section, a model-based explicit control Un(t) is obtained by first (i)

assuming a constant nominal value (estimate), m0, of the mass m and (ii) ignoring the

disturbance force vector D tð Þ ¼ Dx Dy Dz½ �T in Eq. (1). This system is called the
‘nominal’ system. It is deterministic with its equation of motion fully known.

Model-Based Control for the Nonlinear Nominal System with no
Uncertainties

In this paper a two-step procedure is used in developing a controller so that the
follower satellite tracks the required trajectory requirements given in Eq. (3) in
spite of model uncertainties and external disturbances. This section deals with
the first step in which (i) a nominal system with no uncertainties is considered,
and (ii) an explicit closed-form controller for the nonlinear system is obtained
using the Fundamental Equation of Constrained Motion [36]. The trajectory
requirements (Eq. (3)) are viewed as constraints on the system and the resulting
control that is explicitly found drives the leader-follower system to satisfy the
desired formation configuration without any errors [22].

Then, the unconstrained equation of motion of the nominal system to which the
control Un(t) is applied so that it satisfies Eq. (3) is given by
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where m0 is the nominal mass that is assumed to be known, Un(t) is the control force
applied to the nominal system (‘n’ for nominal), and the ‘unconstrained’ acceleration
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The controlled motion q ¼ x y z½ �T which is the solution to Eq. (4) is required to
satisfy the constraint equation Eq. (3) by the application of the control force vector
Un(t) such that the following constraint equation holds:

Φ ¼
ϕ1

ϕ2

ϕ3

2
4

3
5 ¼

x−
ρ

2
sin nt

y−ρcos nt
z−ρsin nt

2
64

3
75 ¼

0
0
0

2
4
3
5: ð6Þ

This constraint equation should be satisfied for all time, but it is more practical to
assume that there are initial errors in the satisfaction of Eq. (6). Hence, we instead
consider the following constraint equation obtained by Baumgarte’s stabilization
technique [37]:

Φ
::

þαΦ
⋅
þβΦ ¼ 0; ð7Þ

where α and β are positive constants which will act as the damping coefficient and the
stiffness of the second-order damped system. Then, as time goes by, the constraints in
Φ(t) will decay to zero and satisfy Eq. (6), and by properly selecting the values of α and
β, one can adjust the decay rate. The system in Eq. (7) is overdamped if α2 − 4β > 0,
critically damped if α2 − 4β = 0, and underdamped if α2 − 4β < 0. The augmented
constraint equation, Eq. (7), can then be written in matrix form:

or more succinctly as,

A
::
q ¼ b; ð9Þ

where A ¼
1 0 0
0 1 0
0 0 1

2
4

3
5, q ¼ x y z½ �T , and the 3 by 1 vector b is the right-hand

side of Eq. (8).
Udwadia and Kalaba [36] showed that the explicit control force vector Un(t) that

renders the constraints Eq. (9) exactly satisfied and simultaneously minimizes the

control cost J ¼ m0 q
::
tð Þ−a tð Þ� �T

q
::
tð Þ−a tð Þ� � ¼ 1

m0
Un tð Þ½ �TUn tð Þ at each instant of

time (when using weighting matrices other than m0 in the control cost, see [38]) is
given by:

Un tð Þ ¼ AT AM−1
0 AT� �þ

b−Aað Þ ¼ m0A
þ b−Aað Þ; ð10Þ

(8)
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where the matrixA and the vector b are given in Eq. (9),M0 =m0I, the vector a is given
in Eq. (5), and the superscript ‘+’ denotes the Moore-Penrose generalized inverse of a
matrix. In the current case, the matrix A is the identity matrix such that Eq. (10)
simplifies to

Un tð Þ ¼ m0 b−að Þ: ð11Þ

Hence Eq. (11), which gives the nominal control so that the desired tajectory
requiremnet (Eq. 3) is achieved for the nominal system (Eq. 4), is then explicitly
obtained as:

Un tð Þ ¼ m0

−
n2ρ
2

sin ntð Þ−α ẋ−
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h i
−β y−ρcos ntð Þ½ � þ 2θ̇ẋþ ::
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where rF = [(x + rL)2 + y2 + z2]1/2. It is noted that we have obtained the nominal control
force Un(t) in Eq. (12) in an explicit form that preserves all the nonlinearities of the
original dynamical system Eq. (1). However, since Eq. (12) does not consider the
uncertain mass m and the disturbance vector D(t), we have to add an additional control
input to compensate for their effects, which is the second step of our two-step control
procedure, and is developed in the next section.

Design of Robust Adaptive Control for the Nonlinear Uncertain System

When the nominal control force vector Un(t) that is explicitly obtained in Eq. (12) is
added to the nominal system so that

m0q
::

n ¼ m0aþ Un; ð13Þ

the solution of the displacement vector qn(t) exactly follows the constraint in Eq. (9)
and therefore follows the desired formation trajectory qd(t). However, the nominal
system assumes that m =m0 and it ignores the presence of the uncertainty D(t). In the
presence of these uncertainties the vector Un(t) (Eq. (12)) when used in Eq. (1) will no
longer make q(t) = qd(t); in fact, the solution q(t) obtained from Eq. (1) will deviate, in
general, from qd(t). Thus, to successfully track the desired trajectory qd(t) in the
presence of m(t, q) and D(t), we add an additional control force vector Uc(t) that
compensates for this deviation so that the general equation of motion of the uncertain
system becomes

m
::
q ¼ maþ Dþ Un þ U c; ð14Þ

and the solution q(t) will now successfully track qd(t). Dividing both sides of Eq. (14)
by m, the acceleration of the controlled system is written as
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q
:: ¼ aþ 1

m
Dþ 1

m
Un þ 1

m
m0u; ð15Þ

where Uc(t) ≜m0u(t) and m0 is the known nominal mass which is assumed to be
constant during the maneuver. It may also be thought of as the best estimate of the
average mass of the satellite during the maneuver. The additional robust control force
vector Uc(t) in Eq. (15) is divided by the mass m(t) that is time varying and unknown.
However, as shall be shown shortly, the effects of m(t) can be incorporated together
with the other uncertain terms and the additional control input Uc(t) will successfully
compensate for all the uncertainty effects.

In short, the aim is to design a robust adaptive control algorithm that drives the
follower satellite to track the desired reference trajectory described in Eq. (3) in which
the mass m(t) and the external disturbance D(t) are uncertain. To achieve this goal, we
employ the fundamental concept of sliding mode control [11]. First, we design a sliding
surface and next, a robust adaptive control strategy is proposed that does not necessitate
exact knowledge of the uncertain mass and/or the external disturbance so that the
control law is automatically updated in real time. As shall be seen shortly, only the
magnitude of control forces is used to update the control law.

Compensating Controller with Known Upper Bound on the Uncertainty

We begin our discussion on developing an adaptive compensating controller, Uc(t) =
m0u(t), that compensates for the uncertainties in the satellite’s flight environment and in
its dynamical model by initially assuming that an upper bound on these uncertainties is
known a priori. We show that under this simplifying assumption, a simple
compensating Lyapunov-based constant-gain controller can be readily designed. The
following Subsection 4.2 deals with the more realistic situation in which the uncertainty
bound is not known a priori.

The performance measure is represented by a 3 by 1 error vector e(t) that is defined
by

e tð Þ≜q tð Þ−qn tð Þ; ð16Þ

where q tð Þ ¼ x tð Þ½ y tð Þ z tð Þ�T is the actual, measured state vector and qn(t) is the
nominal trajectory given in Eq. (13). It is important to note that the error in Eq. (16) is
defined as the difference between the actual state vector q(t) and the ‘nominal’ state
vector qn(t) generated by the solution of Eq. (13) that satisfies the constraint equations
Eq. (7) or Eq. (9); it should not be confused with the ‘desired’ state vector qd(t) in Eq.
(3) that satisfies Eq. (6) with no α and β. Because of the initial errors, qn(t) will be
different from qd(t) at the initial time. If we define another error vector ed(t) as

ed tð Þ≜qn tð Þ−qd tð Þ; ð17Þ

it will asymptotically decay to zero as time goes by and the decay rate will depend on
the values of α and β selected. The difference between the actual, measured state vector
q(t) and the desired one qd(t) is then given by q(t) − qd(t) = e(t) + ed(t). The
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compensating controller u(t) will be designed such that the error e(t) defined in Eq. (16)
always remains in a user-specified small domain or q(t) ≈ qn(t) for all times, and then
q(t) will asymptotically converge to qd(t) with a desired decay rate because e(t) + ed(t) ≈
ed(t) and ed(t)→ 0 as t→∞.

The novel idea in this paper is to compensate for the presence of the unknown/
uncertain deviation of the actual time-dependent environmental disturbances and the
unknown/uncertain deviation of the time-dependent satellite model parameters from
those nominally assumed in obtaining qn(t). This compensation is done by applying an
additional compensating control force Uc(t) so that the actual trajectory q(t) in the
presence of these unknown/uncertain time-varying disturbances and unknown model
parameters always lies within a user-specified ‘ball’ (however small) around the
nominal trajectory qn(t) which itself continually tends asymptotically to the desired
trajectory qd(t). Thus, the compensating control force so-to-say compensates for the
unknown/uncertain environmental and model deviations as though these deviations do
not exist at all. Furthermore, this compensating control force Uc(t) is obtained herein
adaptively and the bound on these uncertainties is not required to be known.

To achieve this objective, we consider a sliding surface for the SFF system described
by Eq. (1):

s tð Þ≜ e
⋅
tð Þ þ Ce tð Þ; ð18Þ

where s tð Þ≜ sx tð Þ½ sy tð Þ sz tð Þ�T and e tð Þ≜ ex tð Þ½ ey tð Þ ez tð Þ�T is the error vector defined
as Eq. (16). In Eq. (18), C is a positive constant to be selected by the user. It is noted
that s(0) = 0 holds because one can always set q(0) = qn(0) and q˙(0) = q˙n(0) where the
nominal trajectory qn(t) is assumed to have nonzero initial errors in the satisfaction of
the desired trajectory tracking, and so the sliding mode always starts from the begin-
ning, the system’s trajectory starts on the sliding manifold, and there is no "reaching
phase" in the sliding dynamics Eq. (18). Also, one can easily show that while the
sliding mode si(t) = 0, (i = x, y, z) holds, the error ei(t) in each axis asymptotically
approaches zero.

In order to ease the controller design process, let us rewrite Eq. (15) as

q
::
tð Þ ¼ f t; q; q̇

� �
þ 1

m
m0u tð Þ; ð19Þ

where f t; q; q̇
� �

≜a t; q; q̇
� �

þ 1
m D tð Þ þ 1

m Un tð Þ is an uncertain term. Then, we have

from Eq. (16)

e
::
tð Þ ¼ ::

q tð Þ− ::
qn tð Þ ¼ f t; q; q̇

� �
−

::
qn tð Þ

h i
þ 1

m
m0u tð Þ: ð20Þ

Also, the time derivative of s(t) in Eq. (18) yields

s
⋅
tð Þ ¼ e

::
tð Þ þ C e

⋅
tð Þ ¼ f t; q; q̇

� �
−q
::

n tð Þ þ 1

m
m0u tð Þ þ C e

⋅
tð Þ; ð21Þ
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or more succinctly,

ṡ tð Þ ¼ g t; q; q̇
� �

þ 1

m
m0u tð Þ; ð22Þ

where g t; q; q̇
� �

≜ f t; q; q̇
� �

−
::
qn tð Þ þ C ė tð Þ is uncertain.

It is assumed that we cannot accurately know g (t, q q˙) and m(t) > 0, but they are
bounded so that

m tð Þ‖g t; q; q̇
� �

‖ < Γ; ð23Þ

where Γ, which is the upper bound on the uncertainties, is an unknown positive
constant.

Now, we consider the following candidate Lyapunov function:

V ¼ m tð Þ
2

s tð ÞT s tð Þ: ð24Þ

The time derivative of Eq. (24) along the sliding variable trajectory Eq. (22) yields

V̇ ¼ ṁ
2
sT sþ msT s

⋅ ¼ ṁ
2
sT sþ msT g þ m0

m
u

� �
¼ ṁ

2
sT sþ msTg þ m0sTu: ð25Þ

Recalling Eq. (2) and Eq. (23), we have m
:

2 s
T s≤0 and

mjsTgj≤‖s‖m‖g‖ < Γ‖s‖; ð26Þ

so that

V̇ ¼ ṁ
2
sT sþ msTg þ m0sTu < Γ‖s‖þ m0sTu: ð27Þ

Given the upper bound Γ that is assumed to be known a priori, the controller Uc(t) that
compensates for the system’s uncertainties can then be simply designed using

u ¼ −
Γ
m0ε

s; ð28Þ

where ε is a (small) positive number and then Eq. (27) becomes

V̇ < Γ‖s‖þ m0sTu ¼ Γ‖s‖−
Γ
ε

sk k2 ¼ −
ffiffiffiffi
2

m

r
Γ

‖s‖
ε

−1

 ! ffiffiffiffi
m
2

r
‖s‖ ¼ −μ⋅V1=2;ð29Þ

where μ≜
ffiffiffi
2
m

q
Γ ‖s‖

ε −1
� �

is positive parameter in the region where ‖s‖ > ε holds. Hence,
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the state trajectory of the original dynamics system Eq. (19) controlled by Eq. (28)
converges to the region ‖s‖ ≤ ε in a finite time. We note that the Lyapunov-based
compensating controller Uc(t) ≜m0u(t) turns out to be simple and has constant gain.

However, as mentioned before, the control law given in Eq. (28) requires a priori
knowledge of the bound on the uncertainty, Γ. In real-life situations, an accurate
estimation of this bound can be difficult and/or expensive to obtain when controlling
a time-varying model of a satellite in an unknown space environment. Estimates of
such bounds are often based on experience, intuition, or some other considerations like
Earth-based experiments. To encompass such real-life situations in which predictions/
estimates of the bounds on the uncertainties encountered during satellite flight-
maneuvers may be difficult to obtain or have low/questionable reliability, we next
consider an adaptive control law that automatically tunes the gain in real time so that
the convergence of the controlled trajectory to the desired one is still guaranteed
without any a priori knowledge of the bound Γ on the existing uncertainties.

Adaptive Compensating Controller with Unknown Upper Bound on the Uncertainty

Since the value of the bound Γ on the uncertainty in Eq. (23) is unknown, the control
law Eq. (28) is modified to

u tð Þ ¼ −
L tð Þ þ L*

m0ε
s tð Þ; ð30Þ

where now the unknown constant gain Γ in Eq. (28) has been replaced with a time-
varying adaptive gain L(t) + L∗, where L(t) > 0 for t ≥ 0, and L∗ is a positive constant.
The gain L(t) is updated using the adaptation rule

L̇ tð Þ ¼ η m0‖u tð Þ‖−L tð Þ
h i

; L 0ð Þ > 0ð Þ ð31Þ

where η is a user-specified positive constant and m0 is the nominal value of m used in
Eq. (13). In view of Eq. (30), Eq. (31) becomes

L̇ tð Þ ¼ η L tð Þ ‖s tð Þ‖
ε

−1

 !
þ L*

ε
‖s tð Þ‖

" #
: L 0ð Þ > 0ð Þ ð32Þ

It is noted that the condition L(t) ≥ L(0) > 0 is always satisfied. In Eq. (31) L̇ tð Þ has its
minimum when ‖u(t)‖ = 0, that is, when ‖s(t)‖ = 0. Eq. (31) then becomes

L̇ tð Þ≥−ηL tð Þ: ð33Þ

The Gronwall’s inequality [39] yields

L tð Þ≥L 0ð Þe−ηt ≥L 0ð Þ > 0: ð34Þ

1481The Journal of the Astronautical Sciences  (2020) 67:1470–1499



When ‖s(t)‖ > ε, then from Eq. (32), L̇ tð Þ > 0. Hence, for a positive value of the initial
condition L(t0), we have L(t) ≥ L(t0) > 0. Here, t0 is the time instant at which the
condition ‖s(t)‖ > ε is first satisfied, and t ≥ t0 ≥ 0. We first prove the following result.

Theorem 1:

Assume that the magnitude of the control force Uc(t) is bounded by the scalarU∗ so that

m0‖u tð Þ‖≤U*: ð35Þ

When ‖s(t)‖ > ε, the gain L(t) updated using Eq. (32) has the upper bound U∗ for t ≥
t0 ≥ 0. The initial condition L(t0) for the gain adaptation rule given in Eq. (32), where t0
is the time instant at which the condition ‖s(t)‖ > ε is first satisfied, can be taken to be
any positive number less than U∗. Hence,

0 < L t0ð Þ≤L tð Þ < U*: ð36Þ

Proof: From Eq. (30) we have

m0u tð Þ ¼ −
L tð Þ þ L*

ε
s tð Þ; ð37Þ

from which it follows that

m0‖u tð Þ‖ ¼ L tð Þ þ L*

ε
‖s tð Þ‖: ð38Þ

Assume that L(t) ≥U∗ when ‖s(t)‖ > ε. Then, we find that from Eq. (38)

m0‖u tð Þ‖ ¼ ‖s tð Þ‖
ε

L tð Þ þ L*
� �

> U* þ L* > U*; ð39Þ

which contradicts the relation m0‖u(t)‖ ≤U∗ that is given in Eq. (35). Hence, our
assumption that L(t) ≥U∗ is incorrect, and therefore L(t) <U∗. Thus, when ‖s(t)‖ > ε
and t ≥ t0 ≥ 0,

0 < L t0ð Þ≤L tð Þ < U*; ð40Þ

which completes the proof.
We are now ready to state the adaptive control approach to be used for t ≥ t0 ≥ 0 as

long as ‖s(t)‖ > ε where t0 is the time instant at which the condition ‖s(t)‖ > ε is first
satisfied.
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Theorem 2:

Assume that the control force has an upper limit U∗ such thatm0‖u(t)‖ ≤U∗ and U∗ ≥ Γ.
Then the control law given in Eq. (30), along with the gain adaptation law given in Eq.
(31) or (32) and any initial condition 0 < L(t0) <U∗ will cause the sliding variable s(t)
given in Eq. (18) to converge to the region ‖s(t)‖ ≤ ε. Here, t0 is the time instant at
which the condition ‖s(t)‖ > ε is first satisfied. The constants η and L∗ are user-defined
positive constants. Also, the error is confined in the region ‖e tð Þ‖≤ ε

C.

Proof: Let us define the following Lyapunov function (to reduce clutter, we often
do not show L as an explicit function of time t)

V tð Þ ¼ m tð Þ
2

s tð ÞT s tð Þ þ 1

2γ
L tð Þ−U*� �2

; t≥ t0≥0 ð41Þ

where L(t) <U∗ by Theorem 1, and γ is a positive constant that will be chosen shortly.
Then, for ‖s(t)‖ > ε the time derivative of Eq. (41) on successively using Eqs. (22), (37),
(26), the Cauchy-Schwarz inequality, and Eq. (23) yields

V̇ ¼ ṁ
2
sT sþ msT s˙þ 1

γ
L−U*� �

L̇

¼ ṁ
2
sT sþ msT g þ m0

m
u

� �
þ 1

γ
L−U*� �

L̇

¼ ṁ
2
sT sþ msTg−

L
ε
sT s−

1

γ
U*−L
� �

L̇−
L*

ε
sT s

< Γ‖s‖−
L
ε

sk k2− 1

γ
U*−L
� �

L̇−
L*

ε
sk k2: ð42Þ

The last inequality follows from the fact m
:

2 s
T s≤0 and Eq. (26). Noting further that

sk k2
ε > ‖s‖, we obtain

V̇ < Γ‖s‖−L‖s‖−
1

γ
U*−L
� �

L̇−L*‖s‖ ¼ ‖s‖ Γ−Lð Þ− 1

γ
U*−L
� �

L̇−L*‖s‖

¼ ‖s‖ Γ−Lð Þ− 1

γ
U*−L
� �

L̇þ ‖s‖ U*−L
� �

−‖s‖ U*−L
� �

−L*‖s‖

¼ ‖s‖ Γ−U*� �
−L*‖s‖−

1

γ
U*−L
� �

L̇þ ‖s‖ U*−L
� �

¼ −‖s‖ U*−Γþ L*
� �

− U*−L
� � 1

γ
L̇−‖s‖

	 

: ð43Þ
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In the last equality the first member on the right-hand side is positive because U∗ ≥Γ is
assumed. Also, by Eq. (40), U∗ − L > 0 is satisfied when ‖s‖ > ε in the second member
on the right.

Thus, to ensure that V̇ < 0 we then need to find a γ such that the inequality 1
γ L̇−‖s‖≥0

holds when ‖s‖> ε and t ≥ t0 ≥ 0. This relation requires that we choose a value of γ such that

γ≤
L̇

‖s‖
¼ η L

1

ε
−

1

‖s‖

 !
þ L*

ε

" #
; t≥ t0≥0: ð44Þ

We have shown when γ is less than or equal to the quantity on the right-hand side of the

inequality in Eq. (44) for t ≥ t0 ≥ 0 and ‖s‖ > ε, then V̇ is guaranteed to be negative.
Since 0 < L(t0) ≤ L(t) (see Eq. (40)) for t ≥ t0 ≥ 0, using Eq. (44) we can choose

γ≤η L t0ð Þ 1

ε
−

1

‖s‖

 !
þ L*

ε

" #
; t≥ t0≥0: ð45Þ

The first term on the right hand side of Eq. (45) is positive when ‖s‖ > ε since the
quantity in the round bracket is positive. Hence, it would suffice to choose

γ≜γ0 ¼ ηL*

ε > 0, so that the inequality in Eq. (45) is met for t ≥ t0 ≥ 0. Thus, with
γ = γ0 in Eq. (41), V̇ < 0 when ‖s‖ > ε. Finally, it can be shown that while the condition
‖s‖ ≤ ε is satisfied, from Eq. (18) the error is confined within the region ‖e tð Þ‖≤ ε

C [25].

Simulation Results

The new two-step adaptive control approach proposed in Section 4 is applied to precision
control of satellite formation flight (SFF) in the face of model and environmental
uncertainties. The aim is to validate the approach and assess its effectiveness through
simulations. A desired relative configuration that has a projected circular formation in the
y-z plane with a 1 km formation radius (ρ = 1 km) is considered (Eq. (3)).

The SFF system parameters and the orbital parameters of the leader satellite used for
the numerical simulation are listed in Table 1, where rp is the distance between the
Earth center and the leader satellite at the perigee, and the orbital elements e, i, Ω, ω,

Table 1 Orbital and system
parameters

Parameters Values

m0, kg 10

μ⊕, km3 ⋅ s−2 398,600

rp. km 6878

e 0.2

i, deg 97.4

Ω, deg 0

ω, deg 0

M0, deg 0
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and M0 are the eccentricity, the inclination, the right ascension of the ascending node,
the argument of perigee, and the mean anomaly at the initial position of the leader
satellite, respectively. All the simulations are carried out in the MATLAB/Simulink
environment. A fixed time-step ode4 Runge-Kutta integrator is used throughout to
more closely reflect the capabilities of embedded on-board micro-controllers usually
employed in real-life satellite maneuvers; the time step is taken to be 0.1 s.

The disturbance force D(t) acting on the follower satellite is given by (in N)

Dx

Dy

Dz

2
4

3
5 ¼ 1:2� 10−3

1−1:5sin ntð Þ
0:5sin 2ntð Þ
sin ntð Þ

2
4

3
5; ð46Þ

where n is the mean angular velocity which is equal to
ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ⊕=a

3
L

q
(aL is the semimajor

axis of the leader satellite). The disturbance force, Eq. (46), incorporates gravitational
perturbations, atmospheric drag, and solar radiation pressure forces, and its magnitude
is greater by at least an order of magnitude than what has been used previously [5, 6,
18].

While it is commonly known how to compute θ(t) in Eq. (5), for the sake of
completeness, we briefly outline this here. Since the argument of perigee (ω) is zero
in our application from Table 1, the true argument of latitude θ(t) is equal to the true
anomaly. First, from time t we obtain the mean anomalyM(t) such thatM(t) = nt, where
n is the mean motion. Next, the eccentric anomaly E(t) is obtained by solving the
Kepler’s equation [31]

M tð Þ ¼ E tð Þ−esin E tð Þð Þ; ð47Þ

where e is the eccentricity. Finally, the true anomaly θ(t) is calculated as [31]

θ tð Þ ¼ 2tan−1
ffiffiffiffiffiffiffiffiffiffiffi
1þ e
1−e

r
tan

E tð Þ
2

	 
 !
: ð48Þ

The initial states for the numerical simulation are as follows:

q 0ð Þ ¼ 100 1100 100½ �T mð Þ; q
⋅
0ð Þ ¼ 0:396 0 0:792½ �T m=sð Þ: ð49Þ

First, let us consider the case where there is no disturbance D(t) and the mass of the
follower satellite has a known constant value of m0 = 10 kg. The control force Un(t)
explicitly given in Eq. (12) is applied to this nominal system, where α = 5.1 × 10−3, β =
6.5 × 10−6 are selected such that the system Eq. (7) is critically damped since α2 − 4β =
0. Fig. 1 shows the controlled trajectory in 3-dimensional space (upper left), projected
onto y-z plane (upper right), projected onto x-z plane (bottom left), and projected onto
x-y plane (bottom right). We have, as noted before, ignored any change in the mass of
the satellite from its nominal value during the actual maneuver and also the presence of
any environmental disturbances during the maneuver. It is clearly seen that the
controlled trajectory successfully merges into the desired projected circular orbit in
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the y-z plane, the projected straight line in the x-z plane, and the projected elliptical orbit
in the x-y plane. It should be noted that this nominal trajectory tends exactly to the
desired trajectory at the user-specified rate given in Eq. (7). Figure 2 depicts relative
position errors q(t) − qd(t) in the satisfaction of the desired trajectory (Eq. (3)) along
each axis and the control thrust demand. Note that the relative errors q(t) − qd(t) are
equal to e(t) + ed(t) defined in Eqs. (16) and (17), respectively, and since Un(t) is the
exact control force, e(t) = q(t) − qn(t) = 0 is maintained throughout the maneuver and
since qn(t) asymptotically approaches qd(t) at a rate described by Eq. (7), q(t) also
converges to qd(t) at the same rate. The x-axis denotes time normalized by the orbital
period of the leader satellite. It is observed that despite the 100 m initial position offset
on all three axes the controlled trajectory of the follower satellite tends to qd(t). The
error q(t) − qn(t), which is critically damped, asymptotically decays to zero as described
by Eq. (7). The steady-state error is seen to be extremely small and is of the order of
10−12 m.

Now, we consider the case where the disturbance D(t) given by Eq. (46) is imposed
on the system and the mass of the follower is uncertain, time-varying, and governed by

Eq. (2), ṁ tð Þ ¼ −λ‖U tð Þ‖, where λ = 8.0 × 10−5 s/m and the initial mass is m(0) =
10 kg. If we apply only the nominal control force calculated by Eq. (12) to this
uncertain system along with the environmental disturbance D(t), we expect that the
error in the satisfaction of the desired trajectory Eq. (3) does not necessarily converge to
zero, because of the inclusion of the addition of the uncertain terms in Eq. (15).

Fig. 1 Controlled trajectory of the follower satellite obtained by control force Un(t) for nominal system

1486 The Journal of the Astronautical Sciences  (2020) 67:1470–1499



Figure 3 shows the relative position errors q(t) − qd(t) = e(t) + ed(t) and the control thrust
in each axis. As expected, the controlled trajectory does not merge onto the desired
projected circular trajectory and there exists a large error along each axis. More
specifically, due to the uncertainties caused by the mass and the external disturbance,
the actual position vector q(t) fails to track the nominal trajectory qn(t) although qn(t)
still converges to qd(t) as time goes by.

Now let us add the smooth adaptive compensating control force Uc(t) calculated by
Eq. (30) with the gain adaptation law given in Eq. (31). The sliding surface is selected
as in Eq. (18) with C = 1 and the selected control parameters are

Fig. 2 Relative position errors and thrust demand obtained by control force Un(t) for nominal system

Fig. 3 Relative position errors and thrust demand obtained by control force Un(t) in the presence of
disturbance and uncertain mass
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ε ¼ 0:01; η ¼ 0:1; L* ¼ 1;L 0ð Þ ¼ 0:002: ð50Þ

The novel idea herein is focused on compensation for the effects of the unknown/
uncertain actual time-dependent environmental disturbances and satellite model
parameters—in our case, the external disturbance force and the actual unknown,
time-varying mass of the follower satellite during the maneuver. An additional com-
pensating force Uc(t) is applied so that despite these disturbances and uncertainties the
actual trajectory q(t) always lies within a user-defined small ‘ball’ around the nominal
trajectory qn(t) which itself, as stated before, asymptotically approaches the desired
trajectory qd(t). In addition, this compensating control force Uc(t) is obtained in an
adaptive manner without needing the information about the bound on these
uncertainties.

Starting with the same initial conditions given in Eq. (49), Fig. 4 shows the time
history of the relative position errors q(t) − qd(t) = e(t) + ed(t), and the control thrust is
provided when the sum of the two control forces Un(t) obtained by Eq. (12) and Uc(t) is
applied to the uncertain system. The application of the additive control force Uc(t)
greatly improves the control accuracy and the steady-state error is extremely small and
of order 10−5 m in the x-direction and 10−6 m in the y- and z-directions. The controlled
trajectory is the same as the one shown in Fig. 2 because the additive control Uc(t) has
been designed to track the reference trajectory given in Eq. (3). More specifically, the
error e(t) = q(t) − qn(t) is extremely small (see Fig. 8) such that both q(t) and qn(t)
successfully converge to the desired trajectory qd(t) with a desired rate. This can also be
seen in Fig. 5 where the additive control force Uc(t) is depicted in comparison with the
disturbance force D(t) for each axis. The disturbance is to a good extent eliminated by
the application of the additive control force obtained by using the smooth adaptive
sliding mode control developed in Subsection 4.2. This is because the unknown
variation in the mass of the satellite over the period of integration, which the

Fig. 4 Relative position errors and thrust demand obtained by applying both Un(t) and Uc(t) in the presence of
unknown/uncertain disturbance and unknown/uncertain follower satellite mass with α = 5.1 × 10−3, β = 6.5 ×
10−6
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adaptive control Uc(t) also compensates for, is not appreciable, as shown later (see
Fig. 10). With the disturbance nearly eliminated, the control Un(t) then successfully

Fig. 6 Comparison of nominal control force Un(t), adaptive control force Uc(t), and Un(t) +Uc(t)

Fig. 5 Adaptive control force Uc(t), disturbance D(t), and Uc(t) +D(t)
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tracks the desired trajectory. More specifically, from Eqs. (13) and (14), the error
between the actual trajectory and the nominal trajectory is calculated as

e
::
tð Þ ¼ ::

q tð Þ− ::
qn tð Þ ¼ 1

m tð Þ D tð Þ þ 1−
m tð Þ
m0

	 

Un tð Þ þ U c tð Þ

� �
: ð51Þ

As mentioned before, the mass m(t) of the follower satellite does not deviate much
from the nominal mass m0 throughout the maneuver and the magnitude of e¨(t) remains
pretty small, the magnitude of the sum of Uc(t) +D(t) also should be small, which
explains Fig. 5. The three control thrust functions Un(t),Uc(t), and Un(t) +Uc(t) for each
axis are compared with one another in Fig. 6. We can see that the amplitude of the
adaptive sliding mode control force Uc(t) is of the same order of magnitude as the
nominal control force Un(t). The nominal control commandUn(t) enables exact tracking
of the nominal trajectory while the robust control command Uc(t) mitigates the effects
of uncertain environmental disturbances and uncertain mass variations such that the
disturbed, uncertain system behaves as the nominal system.

Figure 7 depicts the time history of the sliding variable s(t) for each axis (upper part)

and the ratio ‖s tð Þ‖
ε (lower part). It can be seen that the sliding variable is well confined

within the region ‖s(t)‖ ≤ ε = 0.01. Also, by defining the error as in Eq. (16), the sliding
variable s(t) starts from zero. This shows the difference between the current approach
and the approach commonly adopted in the sliding mode control literature in which

Fig. 7 Time history of sliding variable s(t) and the ratio ‖s tð Þ‖
ε
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considerable difficulty is encountered in trying to remove the so-called ‘reaching phase’
[40, 41]. Figure 8 represents the time history of the error defined as in Eq. (16) for each
axis. As shown in Theorem 2, the error is well confined within the region
‖e tð Þ‖≤ ε

C ¼ 0:01.
Figure 9 shows the time history of the gain L(t) obtained as in Eq. (31). The initial

gain is selected as L(0) = 0.002 and it is seen that the gain is always positive throughout
the maneuver. Figure 10 shows the variation of the mass m(t). The mass is obtained by
integrating Eq. (2) where U(t) =Un(t) +Uc(t) with the initial condition m(0) =m0. It is
found that after the two-period maneuver the final mass is about 9.9963 kg, a change of
only 0.0037 kg (i.e., mass loss of 0.037%) due to the high specific impulse of the Hall
thruster used.

Fig. 8 Time history of error e(t)

Fig. 9 Time history of gain L(t)
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Finally, we consider the performance of our control methodology in the presence of
limitations placed on the magnitude of the control thrust force. More specifically, it is
assumed that the total control input U(t) =Un(t) +Uc(t) gets saturated at 8 mN in each
direction. It is expected from Figs. 4 and 6 that the control forces are saturated early in
the transient phase especially in the x-direction because of the initial offset errors.
Figure 11 shows the time history of the relative position errors q(t) − qd(t) = e(t) + ed(t)
and the control thrust demand Un(t) +Uc(t) is provided. As expected, the control thrust
in the x-direction shows bang-bang like control nearly up to about a fifth of the period
of the leader satellite because of control thrust saturation. Its y-component is also
affected because the x- and y-components are highly coupled with each other as
expected from the linearized dynamics of relative motion obtained from the
Tschauner-Hempel equations [3]. Nonetheless, as seen in Fig. 11, the steady-state error
along each coordinate axis is commensurate with the case with no saturation shown in

Fig. 10 Time history of mass m(t)

Fig. 11 Relative position errors and thrust demand obtained by applying both Un(t) and Uc(t) in the presence
of disturbance and uncertain mass when control thrust is saturated at 8 mN with α = 5.1 × 10−3, β = 6.5 × 10−6
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Fig. 4. The three control inputs Un(t), Uc(t), and Un(t) +Uc(t) for each axis are shown in
Fig. 12. Although each of the two inputsUn(t) and Uc(t) may exceed the saturation limit
(8 mN), their sum always stays within the limit. Figure 13 shows the variation of the
mass m(t). It can be seen that the final mass is about 9.9959 kg, a change of 0.0041 kg
(i.e., mass loss of 0.041%), which is a slightly greater mass loss than when there is no
limitation on the control thrust (see Fig. 10).

One way to avoid control input saturation is by increasing the settling time to reach
the desired trajectory, which is achieved by appropriately selecting the values of α or β

Fig. 12 Comparison of nominal control force Un(t), adaptive control force Uc(t), and Un(t) +Uc(t) when
control thrust is saturated at 8 mN with α = 5.1 × 10−3, β = 6.5 × 10−6

Fig. 13 Time history of mass m(t) when control thrust is saturated at 8 mN with α = 5.1 × 10−3, β = 6.5 × 10−6
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in Eq. (7) [42]. Using this approach, Fig. 14 shows tracking errors over two time
periods of the leader satellite, and the required control thrust demand when α = 1.6 ×
10−3, β = 6.5 × 10−7. By adjusting α and β so that the settling time becomes longer,
control thrust demands that do not reach saturation can be thus obtained. Figure 15
shows the corresponding variation of the mass of the follower satellite. The final mass
is now about 9.9964 kg, a change of 0.0036 kg (i.e., mass loss of 0.036%), which saves
a little more fuel than the control thrust saturation (see Fig. 13). As for the larger errors
seen in Fig. 14 when compared with Fig. 4, the smaller values of α or β cause slower
convergence of qn(t) to qd(t), and so over the time horizon of two orbital periods shown
the corresponding tracking errors are larger. This is verified in Fig. 16, where even
smaller values of α = 1.1 × 10−3, β = 3.0 × 10−7 are used, leading to an even longer
settling time; the simulation is now done for six orbital periods of the leader satellite. As

Fig. 14 Relative position errors and thrust demand obtained by applying both Un(t) and Uc(t) in the presence
of disturbance and uncertain mass with α = 1.6 × 10−3, β = 6.5 × 10−7

Fig. 15 Time history of mass m(t) with α = 1.6 × 10−3, β = 6.5 × 10−7
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seen in this figure, the final errors, near the end of the simulation time, are of the same
order of magnitude as those shown in Fig. 4, and the control thrust shows no saturation.
Figure 17 depicts the variation of the mass of the follower satellite. The mass after the
two-period maneuver is 9.9964 kg, a change of 0.0036 kg (mass loss of 0.036%) and
the final mass (after the six-period maneuver) is 9.9896 kg, a change of 0.0104 kg
(mass loss of 0.104%).

Fig. 16 Relative position errors and thrust demand obtained by applying both Un(t) and Uc(t) in the presence
of disturbance and uncertain mass with α = 1.1 × 10−3, β = 3.0 × 10−7

Fig. 17 Time history of mass m(t) with α = 1.1 × 10−3, β = 3.0 × 10−7
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Conclusion

In this paper a new on-orbit autonomous control methodology is proposed for precision
formation flight of satellites in the presence of uncertainties in the description of their
physical models and in the description of the environmental fields through which the
formation moves. The methodology is used to precisely track the desired relative
trajectories between two satellites flying in formation. In the first step of the method-
ology, a nominal deterministic system is considered in which the uncertain parameters
in the satellite model are replaced by their best estimates and the uncertain fields are
deterministically described using their best representations. Despite large initial devi-
ations from the desired formation configuration, closed-form control to exactly track
the nominal trajectory is obtained. This control minimizes a desired quadratic cost
function of the control force at each instant of time and is based on results from
analytical dynamics. It provides an explicit solution and there are no linearizations/
approximations of the nonlinear system.

The second step of the control methodology deals with handling the presence of
uncertainties in the satellite model and the external environmental force fields in which
it moves. A methodology for the design of a second (additive) adaptive sliding mode
controller is developed to guarantee robust trajectory tracking in the presence of these
uncertainties. This adaptive control law automatically updates the gain without a priori
information about the bounds on the uncertainties involved such that any unknown
effects of uncertainties and disturbances that may be time varying are effectively
suppressed. The control produces no chattering and the precision with which the
trajectory is tracked can be specified by the user. This adaptive control law is developed
to track the nominal trajectory designed in the first step so that even in the presence of
large initial deviations from the desired formation configuration, the control guarantees
robustness throughout the maneuver by keeping the controlled system always in the
close vicinity of the sliding surface. This provides a significant advance over currently
available approaches that have been proposed in the existing literature.

In brief, the new methodology that is developed in this paper simultaneously
achieves three important goals that are useful in real-life applications. They can be
summarized as follows:

1. The follower satellite (or satellite formation) is guided to be asymptotically con-
fined to a user-prescribed ‘ball’ of a desired trajectory as though:

a. any time-varying unknown/uncertain environmental flight disturbances beyond
those that are included (on the basis of experience/intuition/etc.) in the system
model are no longer present, because the adaptively controlled system follows
the nominal trajectory so that it always lies in a user-specified ball, no matter
how small, around this nominal trajectory, while the nominal trajectory as-
ymptotically tends to the desired trajectory at a user-specified rate, and

b. any time-varying unknown/uncertain parameters in the satellite model(s) be-
yond the best estimates of these parameters used in the system model, are no
longer present.

2. The desired trajectory is the optimal trajectory, optimized at each instant of time
while minimizing a user-prescribed control cost, for the full nonlinear model in
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which no linearizations/approximations are made. This desired trajectory is based
on a system model that includes the best available information on the environmen-
tal flight uncertainties during the course of the mission and the best available
estimates of the uncertain parameters describing the satellite along its trajectory.

3. The upper bounds on the deviations of the environmental uncertainties and the
satellite modeling uncertainties from their best estimates used in the system model
are not required to be known. This is achieved through the development of a new
adaptive Lyapunov-based control methodology that guarantees that these uncer-
tainties are compensated for, by having the satellite asymptotically always lie in a
‘ball,’ no matter how small, of the desired trajectory.

Extensive numerical simulations that consider an uncertain mass of the follower
satellite and an uncertain space environment are carried out. Fixed time-step ode4
Runge-Kutta integrators are used to more closely reflect the capabilities of embedded
on-board micro-controllers usually employed in real-life satellite maneuvers. The
results demonstrate the simplicity, effectiveness, and robustness of the proposed control
methodology. They show that the convergence to the desired trajectory to within user-
specified error bounds is autonomously attained despite large initial offset errors and
significant levels of time-varying uncertainties both in the satellite model and especially
in its flight environment. The effects of saturation on the available control force are also
simulated. It is shown that precision tracking of the desired configuration trajectory in
the face of unknown environmental disturbances as well as satellite modeling uncer-
tainties is still attained despite control thrust saturation that may arise in real-world
systems. An alternative approach using this methodology to reduce/prevent control
thrust saturation is also investigated and shown to be efficacious. Future work will
include the extension of the proposed control methodology to include attitude control
and further improvements in the adaptive control technique for faster and even more
accurate tracking.
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